Accelerating generalized Iterative Scaling Based on Staggered Aitken Method for on-Line Conditional Random Fields

نویسندگان

  • Hee-Deok Yang
  • Heung-Il Suk
  • Seong-Whan Lee
چکیده

In this paper, a convergent method based on Generalized Iterative Scaling (GIS) with staggered Aitken acceleration is proposed to estimate the parameters for an on-line Conditional Random Field (CRF). The staggered Aitken acceleration method, which alternates between the acceleration and non-acceleration steps, ensures computational simplicity when analyzing incomplete data. The proposed method has the following advantages: (1) It can approximate parameters close to the empirical optimum in a single pass through the training examples; (2) It can reduce the computing time by approximating the Jacobian matrix of the mapping function and estimating the relation between the Jacobian and Hessian in order to replace the inverse of the objective function’s Hessian matrix. We show the convergence of the penalized GIS based on the staggered Aitken acceleration method, compare its speed of convergence with those

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential Conditional Generalized Iterative Scaling

We describe a speedup for training conditional maximum entropy models. The algorithm is a simple variation on Generalized Iterative Scaling, but converges roughly an order of magnitude faster, depending on the number of constraints, and the way speed is measured. Rather than attempting to train all model parameters simultaneously, the algorithm trains them sequentially. The algorithm is easy to...

متن کامل

Efficient Off-line and On-line Algorithms for Training Conditional Random Fields by Approximating Jacobians

Previously, algorithms for training conditional random fields were derived from the second-order Taylor expansion of the log-likelihood of the training data and the key issue is to approximate the Hessian matrix, which usually requires O(n) computations per iteration. In this paper, we show that efficient off-line and online algorithms for training conditional random fields (CRF) can also be de...

متن کامل

An Iterative Scheme for Generalized Equilibrium, Variational Inequality and Fixed Point Problems Based on the Extragradient Method

The problem ofgeneralized equilibrium problem is very general in the different subjects .Optimization problems, variational inequalities, Nash equilibrium problem and minimax problems are as special cases of generalized equilibrium problem. The purpose of this paper is to investigate the problem of approximating a common element of the set of generalized equilibrium problem, variational inequal...

متن کامل

Unsupervised texture segmentation using a statistical wavelet-based hierarchical multidata model

In this paper, we describe a new hidden Markov random field model, which we call hierarchical multi-data model, and which is based on a triplet of random fields (two hidden random fields and one observed field) in order to capture inter-scale and within-scale dependencies between various scales of resolution of wavelet-based texture features. We present a variation of the Iterated Conditional M...

متن کامل

Gradient Tree Boosting for Training Conditional Random Fields

Conditional random fields (CRFs) provide a flexible and powerful model for sequence labeling problems. However, existing learning algorithms are slow, particularly in problems with large numbers of potential input features and feature combinations. This paper describes a new algorithm for training CRFs via gradient tree boosting. In tree boosting, the CRF potential functions are represented as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJWMIP

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2012